Глаз и его строение – функции и схема органов зрения. Строение и функции глаза человека Часть глаза особенности функции

Пигментный слой изнутри прилегает к структуре глаза, обозначаемой как мембрана Бруха. Толщина этой мембраны составляет от 2 до 4 мкм, также она называется стекловидной пластинкой за счет полной своей прозрачности. Функции мембраны Бруха заключаются в создании антагонизма цилиарной мышцы в момент аккомодации. Также мембрана Бруха осуществляет доставку питательных веществ и жидкостей к пигментному слою сетчатки и к сосудистой оболочке.

По мере старения организма происходит утолщение мембраны и изменение ее белкового состава. Эти изменения приводят к замедлению обменных реакций, также в пограничной мембране развивается и пигментный эпителий в виде слоя. Происходящие изменения говорят о возрастных болезнях сетчатки.

Размер сетчатки глаза взрослого человека достигает 22 мм и покрывает она примерно 72% от всей площади внутренних поверхностей глазного яблока. Пигментный эпителий сетчатки, то есть самый наружный ее слой, связан с сосудистой оболочкой глаза человека теснее, чем с остальными структурами сетчатки.

В центре сетчатке, в той части, которая находится ближе к носу, на задней стороне поверхности имеется диск зрительного нерва. В диске отсутствуют фоторецепторы, и потому он обозначается в офтальмологии термином «слепое пятно». На фото, сделанных при микроскопических исследованиях глаза, «слепое пятно» выглядит, как овальная форма бледного оттенка, слегка возвышающаяся над поверхностью и имеющая в диаметре около 3 мм. Именно в этом месте из аксонов ганглионарных нейроцитов начинается первичное строение зрительного нерва. Центральная часть диска сетчатки человека имеет углубление, через это углубление проходят сосуды. Их функции заключаются в кровоснабжении сетчатки.

Сбоку от диска зрительного нерва, на расстоянии примерно в 3 мм, находится пятно. В центральной части этого пятна расположена центральная ямка – углубление, являющееся самым чувствительным к световому потоку участком сетчатки глаза человека.

Центральная ямка сетчатки — это так называемое «желтое пятно», которое отвечает за ясное и четкое центральное зрение. В «желтом пятне» сетчатки человека имеются только колбочки.

Человек (а также другие приматы) имеют свои особенности строения сетчатки. У человека имеется центральная ямка, тогда как у некоторых видов птиц, а также у кошек и собак вместо этой ямки есть «зрительная полоска».

Сетчатка глаза в центральной своей части представлена только ямкой и окружающей ее областью, которая располагается в радиусе 6 мм. Затем идет периферическая часть, где постепенно к краям число колбочек и палочек неуклонно уменьшается. Заканчиваются все внутренние слои сетчатки зубчатым краем, строение которого не предполагает наличие фоторецепторов.

Толщина сетчатки на всем ее протяжении неодинакова. В самой толстой части возле края диска зрительного нерва толщина доходит до 0,5 мм. Самая минимальная толщина выявлена в области желтого тела, а точнее его ямки.

Микроскопическое строение сетчатки

Анатомия сетчатки на микроскопическом уровне представлена несколькими слоями нейронов. Имеются два слоя синапсов и три слоя нервных клеток, расположенных радикально.
В самой глубокой части сетчатки глаза человека находятся ганглионарные нейроны, палочки и колбочки при этом удалены от центра на наибольшее расстояние. Другими словами, такое строение делает сетчатку инвертированным органом. Именно поэтому свет, перед тем как попасть на фоторецепторы, должен проникнуть через все внутренние слои сетчатки. Однако поток света не проникает через пигментный эпителий и хориоидею, так как они являются непрозрачными.

Перед фоторецепторами имеются капилляры, из-за чего лейкоциты при взгляде на источник синего света часто воспринимаются как мельчайшие движущиеся точки, имеющие светлую окраску. Такие особенности зрения в офтальмологии обозначаются как феномен Ширера или энтопический феномен синего поля.

Помимо ганглионарных нейронов и фоторецепторов в сетчатке находятся и биполярные нервные клетки, их функции заключаются в передаче контактов между первыми двумя слоями. Горизонтальные связи в сетчатке осуществляются за счет амакриновых и горизонтальных клеток.

На сильно увеличенном фото сетчатки глаза между слоем фоторецепторов и слоем ганглионарных клеток можно увидеть два слоя, состоящие из сплетений волокон нервов и имеющие множество синаптических контактов. Эти два слоя имеют собственные названия – наружный плексиформный слой и внутренний плексиформный слой. Функции первого заключаются в осуществлении непрерывных контактов между колбочками и палочками и также между вертикальными биполярными клетками. Внутренний плексиформный слой переключает сигнал с биполярных клеток на ганглионарные нейроны и на амакриновые клетки, расположенные в горизонтальном и вертикальном направлении.

Из этого можно сделать вывод, что нуклеарный слой, находящийся снаружи, содержит фотосенсорные клетки. Во внутренний нуклеарный слой входят тела биполярных амакриновых и горизонтальных клеток. В гангилионарный слой входят непосредственно сами ганглионарные клетки и также незначительное количество амакриновых клеток. Все слои сетчатки пронизаны клетками Мюллера.

Строение наружной пограничной мембраны представлено синаптическими комплексами, которые располагаются между наружным слоем ганглионарных клеток и между фоторецепторами. Слой волокон нервов образуется аксонами ганглионарных клеток. В образовании внутренней пограничной мембраны участие принимают базальные мембраны клеток Мюллера и окончания их отростков. Аксоны ганглионарных клеток, не имеющие шванновских оболочек, достигнув внутренней границы сетчатки глаза, под прямым углом поворачивают и направляются к тому месту, где формируется зрительный нерв.
Сетчатка глаза любого человека содержит от 110 до 125 млн палочек и от 6 до 7 млн колбочек. Располагаются эти светочувствительные элементы неравномерно. В центральной части находится максимальное количество колбочек, в периферической больше палочек.

Заболевания сетчатки

Выявлено множество приобретенных и наследственных заболеваний глаз, при которых в патологический процесс может вовлекаться и сетчатка. К этому списку можно отнести следующие:

  • пигментную дегенерацию сетчатки (является наследственной, при ее развитии поражается сетчатка и утрачивается периферическое зрение);
  • дистрофию желтого пятна (группа заболеваний, основным симптомом которых является утрата центрального зрения);
  • дистрофию макулы сетчатки (также является наследственной, связана с симметричным двусторонним поражением макулярной зоны, утратой центрального зрения);
  • палочко-колбочковую дистрофию (возникает, когда повреждаются фоторецепторы сетчатки);
  • отслойку сетчатки (отделение от задней части глазного яблока, которое может возникать под влиянием воспалений, дегенеративных изменений, в результате травм);
  • ретинопатии (провоцируемые сахарным диабетом и артериальной гипертензией);
  • ретинобластому (злокачественная опухоль);
  • макулодистрофию (патологии кровеносных сосудов и нарушения в питании центральной области сетчатки).



Строение глаза человека включает в себя множество сложных систем которые составляют зрительную систему с помощью которой обеспечивается получение информации о том, что окружает человека. Входящие в ее состав органы чувств, характеризуемые как парные, отличается сложностью строения и уникальностью. Каждый из нас обладает индивидуальными глазами. Их характеристики исключительные. В то же время схема строения глаза человека и функционал, имеет общие черты.

Эволюционное развитие привело к тому, что органы зрения стали максимально сложными образованиями на уровне структур тканевого происхождения. Основное предназначение глаза заключается в обеспечении зрения. Эту возможность гарантируют кровеносные сосуды, соединительные ткани, нервы и пигментные клетки. Ниже приведем описание анатомии и основных функций глаза с обозначениями.


Под схемой строения глаз человека следует понимать весь глазной аппарат имеющий оптическую систему, отвечающую за обработку информации в виде зрительных образов. Здесь подразумевается ее восприятие, последующая обработка и передача. Все это реализуется за счет элементов, формирующих глазное яблоко.

Глаза имеют округлую форму. Местом его расположения служит специальная выемка в черепе. Она именуется как глазная. Наружная часть закрывается веками и складками кожи, служащими для размещения мышц и ресниц.


Их функциональность заключается в следующем:
  • увлажнение, что обеспечивают находящиеся в ресницах железы. Секреторные клетки этого вида способствуют образованию соответствующей жидкости и слизи;
  • защита от повреждений механического характера. Это достигается посредством смыкания век;
  • удаление мельчайших частиц, попадающих на склеру.

Функционирование системы зрения настроено таким образом, чтобы с максимальной точностью осуществлять передачу получаемых световых волн. В этом случае требуется бережное отношение. Рассматриваемые органы чувств отличаются хрупкостью.

Веки

Кожные складки – это то, что представляют собой веки, которые постоянно находятся в движении. Происходит мигание. Такая возможность доступна благодаря наличию связок, расположенных по краям век. Также эти образования выступают в роли соединительных элементов. С их помощью веки крепятся к глазнице. Кожа образует верхний слой век. Затем следует слой мышц. Далее идет хрящевая ткань и конъюнктива.

Веки в части наружного края имеют два ребра, где одно – переднее, а другое – заднее. Они образуют интермаргинальное пространство. Сюда выводятся протоки, идущие от мейбомиевых желез. С их помощью вырабатывается секрет, дающий возможность скользить векам с предельной легкостью. При этом достигается плотность смыкания век, и создаются условия для правильного отвода слезной жидкости.

На переднем ребре находятся луковицы, обеспечивающие рост ресничек. Сюда же выходят протоки, служащие транспортными путями для маслянистого секрета. Здесь же располагаются выводы потовых желез. Углы век соотносятся с выводами слезных протоков. Заднее ребро служит гарантией того, что каждое веко будет плотно прилегать к глазному яблоку.

Для век характерны сложные системы, обеспечивающие эти органы кровью и поддерживающие правильность проводимости нервных импульсов. За кровоснабжение отвечает сонная артерия. Регуляция на уровне нервной системы – задействование двигательных волокон, формирующих лицевой нерв, а также обеспечивающих соответствующую чувствительность.

К главным функциям века относят защиту от повреждений в результате механического воздействия и инородных тел. К этому следует добавить функцию увлажнения, способствующую насыщению влагой внутренних тканей органов зрения.

Глазница и ее содержимое

Под костной впадиной понимается глазница, которая еще именуется как костная орбита. Она служит надежной защитой. Структура этого образования включает в себя четыре части – верхнюю, нижнюю, наружную и внутреннюю. Они образуют единое целое за счет устойчивого соединения между собой. При этом их прочность различная.

Особой надежностью отличается наружная стенка. Внутренняя значительно слабее. Тупые травмы способны спровоцировать ее разрушение.


К особенностям стенок костной впадины относят их соседство с воздушными пазухами:
  • внутри – решетчатый лабиринт;
  • низ – гайморова пазуха;
  • верх – лобная пустота.


Подобное структурирование создает определенную опасность. Опухолевые процессы, развивающиеся в пазухах, способны распространиться и на полость глазницы. Допустимо и обратное действие. Глазница сообщается с полостью черепа посредством большого числа отверстий, что предполагает возможность перехода воспаления на участки головного мозга.

Зрачок

Зрачок глаза представляет собой отверстие круглой формы, расположенное в центре радужки. Его диаметр способен изменяться, что позволяет регулировать степень проникновения светового потока во внутреннюю область глаза. Мышцы зрачка в виде сфинктера и дилататора обеспечивают условия, когда изменяется освещенность сетчатки. Задействование сфинктера сужает зрачок, а дилататора – расширяет.

Такое функционирование упомянутых мышц сродни тому, как действует диафрагма фотоаппарата. Слепящий свет приводит к уменьшению ее диаметра, что отсекает слишком интенсивные световые лучи. Создаются условия, когда достигается качество изображения. Недостаток освещенности приводит к другому результату. Диафрагма расширяется. Качество снимка опять же остается высоким. Здесь можно говорить о диафрагмирующей функции. С ее помощью обеспечивается зрачковый рефлекс.


Величина зрачков регулируется в автоматическом режиме, если такое выражение допустимо. Сознание человека явным образом этот процесс не контролирует. Проявление зрачкового рефлекса связано с изменением освещенности сетчатой оболочки. Поглощение фотонов запускает процесс передачи соответствующей информации, где под адресатами понимаются нервные центры. Требуемая реакция сфинктера достигается после обработки сигнала нервной системой. В действие вступает ее парасимпатический отдел. Что касается дилататора, то здесь в дело вступает симпатический отдел.

Рефлексы зрачка

Реакция в виде рефлекса обеспечивается за счет чувствительности и возбуждения двигательной активности. Сначала формируется сигнал как ответ на определенное воздействие, в дело вступает нервная система. Затем следует конкретная реакция на раздражитель. В работу включаются мышечные ткани.

Освещение заставляет зрачок сужаться. Это отсекает слепящий свет, что положительно сказывается на качестве зрения.


Такая реакция может характеризоваться следующим образом:
  • прямая – освещается один глаз. Он реагирует требуемым образом;
  • содружественная – второй орган зрения не освещается, но отзывается на световое воздействие, оказываемое на первый глаз. Эффект этого вида достигается посредством того, что волокна нервной системы частично перекрещиваются. Образуется хиазма.

Раздражитель в виде света не является единственной причиной изменения диаметра зрачков. Еще возможны такие моменты, как конвергенция – стимуляция активности прямых мышц зрительного органа, и – задействование цилиарной мышцы.

Возникновение рассматриваемых зрачковых рефлексов происходит тогда, когда изменяется точка стабилизации зрения: взгляд переводится с объекта, расположенного на большом удалении, на объект, находящийся на более близком расстоянии. Задействуются проприорецепторы упомянутых мышц, что обеспечивают волокна, идущие к глазному яблоку.

Эмоциональный стресс, например, в результате боли или испуга, стимулирует расширение зрачка. Если раздражается тройничный нерв, а это говорит о низкой возбудимости, то наблюдается эффект сужения. Также подобные реакции возникают при приеме определенных лекарственных препаратов, возбуждающих рецепторы соответствующих мышц.

Зрительный нерв

Функциональность зрительного нерва заключается в доставке соответствующих сообщений в определенные области головного мозга, предназначенные для обработки световой информации.

Импульсы света сначала попадают на сетчатку. Местонахождение зрительного центра определяется затылочной долей головного мозга. Структура зрительного нерва предполагает наличие нескольких составляющих.

На этапе внутриутробного развития структуры головного мозга, внутренней оболочки глаза и зрительного нерва идентичны. Это дает основание утверждать, что последний – часть мозга, находящаяся вне пределов черепной коробки. При этом обычные черепно-мозговые нервы имеют отличную от него структуру.

Длина зрительного нерва небольшая. Составляет 4–6 см. Преимущественно местом его расположения служит пространство за глазным яблоком, где он погружен в жировую клетку орбиты, что гарантирует защиту от повреждений извне. Глазное яблоко в части заднего полюса – участок, где начинается нерв этого вида. В этом месте наблюдается скопление нервных отростков. Они формируют своеобразный диск (ДЗН). Такое название объясняется приплюснутостью формы. Двигаясь дальше, нерв выходит в глазницу с последующим погружением в мозговые оболочки. Затем он достигает передней черепной ямки.


Зрительные пути образуют хиазму внутри черепа. Они пересекаются. Эта особенность важна при диагностировании глазных и неврологических заболеваний.

Непосредственно под хиазмом находится гипофиз. От его состояния зависит, насколько эффективно способна работать эндокринная система. Такая анатомия отчетливо просматривается, если опухолевые процессы затрагивают гипофиз. Правлением патологии этого вида становится оптико-хиазмальный синдром.

Внутренние ветви сонной артерии отвечают за то, чтобы обеспечивать зрительный нерв кровью. Недостаточная длина цилиарных артерий исключает возможность хорошего кровоснабжения ДЗН. В то же время другие части получают кровь в полном объеме.

Обработка световой информации напрямую зависит от зрительного нерва. Главная его функция – доставить сообщения относительно полученной картинки до конкретных адресатов в виде соответствующих зон головного мозга. Любые травмы этого образования вне зависимости от тяжести способны привести к негативным последствиям.

Камеры глазного яблока

Пространства замкнутого типа в глазном яблоке – это так называемые камеры. В них содержится внутриглазная влага. Между ними существует связь. Таких образований два. Одно занимает переднее положение, а другое – заднее. В качестве связующего звена выступает зрачок.

Переднее пространство расположено сразу за областью роговицы. Его тыльная сторона ограничена радужной оболочкой. Что касается пространства за радужкой, то это задняя камера. Стекловидное тело служит ей опорой. Неизменяемый объем камер – это норма. Производство влаги и ее отток – процессы, способствующие корректировке соответствия стандартным объемам. Выработка глазной жидкости возможна за счет функциональности ресничных отростков. Ее отток обеспечивается благодаря системе дренажей. Она находится во фронтальной части, где роговица контактирует со склерой.

Функциональность камер заключается в поддержании «сотрудничества» между внутриглазными тканями. Также они отвечают за поступление световых потоков на сетчатую оболочку. Лучи света на входе преломляются соответствующим образом в результате совместной деятельности с роговицей. Это достигается посредством свойств оптики, присущих не только влаге внутри глаза, но и роговой оболочке. Создается эффект линзы.

Роговица в части ее эндотелиального слоя выступает в роли внешнего ограничителя для передней камеры. Рубеж обратной стороны формируется радужкой и хрусталиком. Максимальная глубина приходится на ту область, где располагается зрачок. Ее величина доходит до 3,5 мм. При движении к периферии этот параметр медленно уменьшается. Иногда такая глубина оказывается большей, например, при отсутствии хрусталика ввиду его удаления, или меньшей, если отслаивается сосудистая оболочка.


Заднее пространство ограничивается спереди листком радужки, а его тыльная часть упирается в стекловидное тело. В роли внутреннего ограничителя выступает экватор хрусталика. Внешний барьер образует цилиарное тело. Внутри находится большое число цинновых связок, представляющих собой тонкие нити. Они создают образование, выступающее в роли связующего звена между ресничным телом и биологической линзой в виде хрусталика. Форма последнего способна изменяться под воздействием цилиарной мышцы и соответствующих связок. Это обеспечивает требуемую видимость объектов вне зависимости от расстояния до них.

Состав влаги, находящейся внутри глаза, соотносится с характеристиками плазмы крови. Внутриглазная жидкость делает возможным доставку питательных веществ, востребованных с целью обеспечения нормальной работы органов зрения. Также с ее помощью реализуется возможность удаления продуктов обмена.

Вместительность камер определяется объемами в диапазоне от 1,2 до 1,32 см3. При этом важно то, как производится выработка и отток глазной жидкости. Эти процессы требуют равновесия. Любые нарушения работы такой системы приводят к негативным последствиям. Например, существует вероятность развития , что грозит серьезными проблемами с качеством зрения.

Цилиарные отростки служат источниками глазной влаги, что достигается за счет фильтрации крови. Непосредственное место, где образуется жидкость, – задняя камера. После этого она перемещается в переднюю с последующим оттоком. Возможность этого процесса обусловливается разницей давления, создающегося в венах. На последнем этапе происходит всасывание влаги этими сосудами.

Шлеммов канал

Щель внутри склеры, характеризуемая как циркулярная. Названа по фамилии немецкого врача Фридриха Шлемма. Передняя камера в части своего угла, где образуется стык радужки и роговицы, – это более точная область расположения шлеммова канала. Его предназначение заключается в отводе водянистой влаги с обеспечением последующего ее всасывания передней цилиарной веной.


Строение канала в большей мере соотносится с тем, как выглядит лимфатический сосуд. Внутренняя его часть, вступающая в соприкосновение с вырабатываемой влагой, представляет собой сетчатое образование.

Возможности канала в плане транспортировки жидкости составляют от 2 до 3 микро литров в минуту. Травмы и инфекции блокируют работу канала, что провоцирует появления заболевания в виде глаукомы.

Кровоснабжение глаза

Создание потока крови, поступающего к органам зрения, – это функциональность глазной артерии которая является неотъемлемой частью строения глаза. Образуется соответствующая ветвь от сонной артерии. Она достигает глазного отверстия и проникает внутрь глазницы, что делает вместе со зрительным нервом. Затем ее направление меняется. Нерв огибается с внешней стороны таким образом, что ветвь оказывается сверху. Формируется дуга с исходящими от нее мышечными, ресничными и другими ветвями. С помощью центральной артерии обеспечивается кровоснабжение сетчатой оболочки. Сосуды, участвующие в этом процессе, образуют свою систему. В ее состав входят также и ресничные артерии.

После того, как система оказывается в глазном яблоке, происходит ее разделение на ветви, что гарантирует полноценное питание сетчатки. Такие образования определяются как концевые: они не имеют соединений с рядом находящимися сосудами.

Цилиарные артерии характеризируют по признаку расположения. Задние достигают тыльной области глазного яблока, минуют склеру и расходятся. К особенностям передних относят то, что они различаются по длине.

Цилиарные артерии, определяемые как короткие, проходят склеру и формируют отдельное сосудистое образование, состоящее из множества ветвей. На входе в склеру образуется сосудистый венчик из артерий этого вида. Он возникает там, где зрительный нерв берет свое начало.

Цилиарные артерии меньшей длины также оказываются в глазном яблоке и устремляются к ресничному телу. Во фронтальной области каждый такой сосуд распадается на два ствола. Создается образование, обладающее концентрической структурой. После чего они встречаются с подобными ответвлениями другой артерии. Формируется круг, определяемый как большой артериальный. Также возникает аналогичное образование меньших размеров на месте, где находится пояс радужки ресничный и зрачковый.


Цилиарные артерии, характеризуемые как передние, – это часть мышечных кровеносных сосудов подобного типа. Они не заканчиваются в области, образуемой прямыми мышцами, а тянутся дальше. Происходит погружение в эписклеральную ткань. Сначала артерии проходят по периферии глазного яблока, а затем углубляются в него посредством семи ответвлений. В итоге происходит их соединение друг с другом. По периметру радужки формируется круг кровообращения, обозначаемый как большой.

На подходе к глазному яблоку образуется петлистая сеть, состоящая из цилиарных артерий. Она опутывает роговицу. Также происходит деление не ветви, обеспечивающие кровоснабжение конъюнктивы.

Частично оттоку крови способствуют вены, идущие вместе с артериями. Преимущественно это возможно за счет венозный путей, собирающихся в отдельные системы.

Своеобразными коллекторами служат водоворотные вены. Их функциональность – сбор крови. Прохождение этими венами склеры происходит под косым углом. С их помощью обеспечивается отвод крови. Она поступает в глазницу. Основной сборщик крови – глазная вена, занимающая верхнее положение. Посредством соответствующей щели она выводится в пещеристый синус.

Глазная вена внизу принимает кровь от проходящих в этом месте водоворотных вен. Происходит ее раздвоение. Одна ветвь соединяется с глазной веной, находящейся вверху, а другая – достигает глубокой вены лица и щелевидного пространства с крыловидным отростком.

В основном кровоток от ресничных вен (передних) наполняет подобные сосуды глазницы. В результате основной объем крови поступает в венозные пазухи. Создается обратное движение потока. Оставшаяся кровь движется вперед и наполняет вены лица.

Орбитальные вены соединяются с венами полости носа, лицевыми сосудами и решетчатой пазухой. Самый крупный анастомоз образуют вены глазницы и лица. Его граница затрагивает внутренний угол век и соединяет непосредственно глазную вену и лицевую.

Мышцы глаза

Возможность хорошего и объемного зрения достигается тогда, когда глазные яблоки способны двигаться определенным образом. Здесь особую важность приобретает согласованность работы зрительных органов. Гарантами такого функционирования выступают шесть мышц глаза, где четыре из них прямые, а две – косые. Последние так называются ввиду особенности хода.

За активность этих мышц несут ответственность черепные нервы. Волокна рассматриваемой группы мышечной ткани максимально насыщены нервными окончаниями, что обусловливает их работу с позиции высокой точности.

Посредством мышц, отвечающих за физическую активность глазных яблок, доступны разноплановые движения. Потребность в реализации этой функциональности определяется тем, что требуется слаженная работа мышечных волокон этого типа. Одни и те же картинки предметов должны фиксироваться на одинаковых областях сетчатки. Это позволяет ощущать глубину пространства и отлично видеть.



Строение мышц глаза

Мышцы глаза начинаются возле кольца, которое служит окружением зрительного канала вблизи к наружному отверстию. Исключение касается лишь косой мышечной ткани, занимающей нижнее положение.

Мышцы расположены так, что формируют воронку. Через нее проходят нервные волокна и кровеносные сосуды. По мере удаления от начала этого образования происходит отклонение косой мышцы, находящейся вверху. Наблюдается смещение в сторону своеобразного блока. Здесь она преобразуется в сухожилие. Прохождение сквозь петлю блока задает направление под углом. Мышца крепится в верхнем радужном отделе глазного яблока. Там же начинается косая мышца (нижняя), от края глазницы.

По мере приближения мышц к глазному яблоку, образуется плотная капсула (теноновая оболочка). Устанавливается соединение со склерой, что происходит с разной степенью удаленности от лимба. На минимальном удалении располагается внутренняя прямая мышца, на максимальном - верхняя. Фиксация косых мышц производится в ближе к центру глазного яблока.

Функциональность глазодвигательного нерва заключается в поддержании правильной работы мышц глаза. Ответственность отводящего нерва определяется поддержанием активности прямой мышцы (наружной), а блокового – верхней косой. Для регуляции этого вида характерна своя особенность. Контроль незначительного числа мышечных волокон осуществляется за счет одной ветви двигательного нерва, что значительно повышает четкость движений глаз.

Нюансы крепления мышц задают вариативность того, как именно способны двигаться глазные яблоки. Прямые мышцы (внутренние, наружные) крепятся таким образом, что они обеспечиваются горизонтальные повороты. Активность внутренней прямой мышцы позволяет поворачивать глазное яблоко по направлению к носу, а наружной – к виску.

За вертикальные движения отвечают прямые мышцы. Существует нюанс их расположения, обусловленный тем, что присутствует определенный наклон линии фиксации, если ориентироваться на линию лимба. Это обстоятельство создает условия, когда вместе с вертикальным движением глазное яблоко поворачивается внутрь.

Функционирование косых мышц отличается большей сложностью. Объясняется это особенностями расположения этой мышечной ткани. Опускание глаза и поворот наружу обеспечивает косая мышца, расположенная вверху, а подъем, включая поворот наружу, – также косая мышца, но уже нижняя.

Еще к возможностям упомянутых мышц относят обеспечение незначительных поворотов глазного яблока в соответствии с движением часовой стрелки вне зависимости от направления. Регуляция на уровне поддержания нужной активности нервных волокон и слаженность работы глазных мышц – два момента, способствующие реализации сложных поворотов глазных яблок любой направленности. В результате зрение приобретает такое свойство, как объем, а его четкость существенно повышается.

Оболочки глаза

Форма глаза удерживается благодаря соответствующим оболочкам. Хотя на этом функциональность этих образований не исчерпывается. С их помощью осуществляется доставка питательных веществ, и поддерживается процесс (четкое видение предметов при изменении величины расстояния до них).


Органы зрения отличаются многослойной структурой, проявляемой в виде следующих оболочек:
  • фиброзная;
  • сосудистая;
  • сетчатка.

Фиброзная оболочка глаза

Соединительная ткань, позволяющая удерживать конкретную форму глаза. Также выступает в роли защитного барьера. Структура фиброзной оболочки предполагает наличие двух составляющих, где одна – это роговица, а вторая – склера.

Роговица

Оболочка, отличающаяся прозрачностью и эластичностью. По форме соотносится с выпукло-вогнутой линзой. Функциональность практически идентична тому, что делает линза фотоаппарата: фокусирует лучи света. Вогнутая сторона роговицы смотрит назад.


Состав этой оболочки формируется посредством пяти слоев:
  • эпителий;
  • боуменова мембрана;
  • строма;
  • десцеметова оболочка;
  • эндотелий.

Склера

В строении глаза важную роль играет внешняя защита глазного яблока. Формирует фиброзную оболочку, включающую также и роговицу. В отличие от последней склера представляет собой непрозрачную ткань. Связано это с хаотичным расположением коллагеновых волокон.

Основная функция – качественное зрение, что гарантируется ввиду препятствования проникновению световых лучей сквозь склеру.

Исключается вероятность ослепления. Также это образование служит опорой для составляющих глаза, вынесенных за пределы глазного яблока. Сюда относят нервы, сосуды, связки и глазодвигательные мышцы. Плотность структуры обеспечивает поддержание в заданных значениях внутриглазного давления. Шлемов канал выступает в роли транспортного канала, обеспечивающего отток глазной влаги.


Сосудистая оболочка

Формируется на основе трех частей:
  • радужка;
  • цилиарное тело;
  • хориоидея.

Радужка

Часть сосудистой оболочки, отличающаяся от других отделов этого образования тем, что ее расположение фронтальное против пристеночного, если ориентироваться на плоскость лимба. Представляет собой диск. В центре находится отверстие, известное как зрачок.


Структурно состоит из трех слоев:
  • пограничный, расположенный спереди;
  • стромальный;
  • пигментно-мышечный.

В формировании первого слоя участвуют фибробласты, соединяющиеся между собой посредством своих отростков. За ними располагаются пигментсодержащие меланоциты. От количества этих специфичных клеток кожи зависит цвет радужки. Этот признак передается по наследству. Коричневая радужка в плане наследования является доминантной, а голубая – рецессивной.

У основной массы новорожденных радужка имеет светло-голубой оттенок, что обусловливается слабо развитой пигментацией. Ближе к полугодовалому возрасту цвет становится более темным. Это связано с ростом числа меланоцитов. Отсутствие меланосом у альбиносов приводит к доминированию розового цвета. В некоторых случаях возможна , когда глаза в части радужки получают разную окраску. Меланоциты способны провоцировать развитие меланом.

Дальнейшее погружение в строму открывает сеть, состоящую из большого числа капилляров и волокон коллагена. Распространение последних захватывает мышцы радужки. Происходит соединение с ресничным телом.

Задний слой радужки состоит из двух мышц. Сфинктер зрачка, по форме напоминающий кольцо, и дилататор, имеющий радиальную ориентацию. Функционирование первого обеспечивает глазодвигательный нерв, а второго – симпатический. Также здесь присутствует пигментный эпителий как часть недифференцированной области сетчатки.

Толщина радужки отличается вариативностью в зависимости от определенного участка этого образования. Диапазон таких изменений составляет 0,2–0,4 мм. Минимум толщины наблюдается в корневой зоне.

Центр радужки занимает зрачок. Его ширина изменчива под воздействием света, что обеспечивают соответствующие мышцы. Большая освещенность провоцирует сжатие, а меньшая – расширение.

Радужка в части своей передней поверхности делится на зрачковый и ресничный пояса. Ширина первого составляет 1 мм и второго – от 3 до 4 мм. Разграничение в этом случае обеспечивает своеобразный валик, обладающий зубчатой формой. Мышцы зрачка распределены следующим образом: сфинктер – зрачковый пояс, а дилататор – ресничный.

Ресничные артерии, формирующие большой артериальный круг, доставляют кровь к радужке. Еще в этом процессе участвует и малый артериальный круг. Иннервация этой определенных зон сосудистой оболочки достигается за счет ресничных нервов.

Ресничное тело

Область сосудистой оболочки, отвечающая за выработку глазной жидкости. Используется также такое название, как цилиарное тело.
Структура рассматриваемого образования – мышечные ткани и кровеносные сосуды. Мышечное содержание этой оболочки предполагает наличие нескольких слоев, имеющих разную направленность. Их активность включает в работу хрусталик. Его форма меняется. В результате человек получает возможность четкого видения объектов на разных расстояниях. Еще одна функциональность ресничного тела заключается в удержании тепла.

Кровеносные капилляры, находящиеся в ресничных отростках, способствуют производству внутриглазной влаги. Происходит фильтрация кровотока. Влага этого вида обеспечивает нужное функционирование глаза. Удерживается постоянная величина внутриглазного давления.

Также цилиарное тело служит опорой для радужки.

Хориоидея (Choroidea)

Область сосудистого тракта, расположенная сзади. Пределы этой оболочки ограничиваются зрительным нервом и зубчатой линией.
Параметр толщина заднего полюса составляет от 0,22 до 0,3 мм. При приближении к зубчатой линии происходит его уменьшение до 0,1–0,15 мм. Хориоидея в части сосудов состоит из цилиарных артерий, где задние короткие идут по направлению к экватору, а передние – к сосудистой оболочке, когда достигается соединение вторых с первыми в ее передней области.

Цилиарные артерии минуют склеру и достигают супрахориоидального пространства, ограниченного хориоидеей и склерой. Происходит распад на значительное число ветвей. Они становятся основой сосудистой оболочки. По периметру диска зрительного нерва образуется сосудистый круг Цинна – Галера. Иногда в области макулы может наличествовать дополнительная ветвь. Она видима или на сетчатке, или на ДЗН. Важный момент при эмболии центральной артерии сетчатки.



Сосудистая оболочка включает в себя четыре составляющих:
  • надсосудистая с темным пигментом;
  • сосудистая коричневатого оттенка;
  • сосудисто-капиллярная, поддерживающая работу сетчатки;
  • базальный слой.

Сетчатка глаза (ретина)

Сетчаткой является периферический отдел, запускающий в работу зрительный анализатор который играет важную роль в строении глаза человека. С его помощью улавливаются световые волны, производится их преобразование в импульсы на уровне возбуждения нервной системы и осуществляется дальнейшая передача информации посредством зрительного нерва.

Ретина – это нервная ткань, формирующая глазное яблоко в части его внутренней оболочки. Она ограничивает пространство, заполненное стекловидным телом. В качестве внешнего обрамления выступает сосудистая оболочка. Толщина сетчатки незначительная. Параметр, соответствующий норме, составляет лишь 281 мкм.

Поверхность глазного яблока изнутри в большей своей части покрыта ретиной. Началом сетчатой оболочки условно можно считать ДЗН. Далее она тянется до такой границы, как зубчатая линия. Затем преобразуется в пигментный эпителий, обволакивает внутреннюю оболочку ресничного тела и распространяется на радужку. ДЗН и зубчатая линия – это области, где крепление сетчатки наиболее надежное. В других местах ее соединение отличается небольшой плотностью. Именно этот факт объясняет то, что ткань легко отслаивается. Это провоцирует множество серьезных проблем.

Структура сетчатой оболочки формируется нескольким слоями, отличающимися разной функциональностью и строением. Они тесно соединены друг с другом. Образуется плотный контакт, обусловливающий создание того, что принято называть зрительным анализатором. Посредством его человеку предоставляется возможность правильного восприятия окружающего мира, когда производится адекватная оценка цвета, форм и размеров предметов, а также расстояния до них.


Лучи света при попадании в глаз проходят несколько преломляющих сред. Под ними следует понимать роговицу, глазную жидкость, прозрачное тело хрусталика и стекловидное тело. Если рефракция в пределах нормы, то в результате такого прохождения световых лучей на сетчатке формируется картинка объектов, попавших в поле зрения. Полученное изображение отличается тем, что оно перевернутое. Далее определенные части головного мозга получают соответствующие импульсы, и человек приобретает способность видеть то, что его окружает.

С точки зрения структуры ретина – максимально сложное образование. Все ее составляющие тесно взаимодействуют друг с другом. Она отличается многослойностью. Повреждение любого слоя способно привести к негативному исходу. Зрительное восприятие как функциональность сетчатки обеспечивается трех-нейронной сетью, проводящей возбуждения от рецепторов. Ее состав формируется за счет широкого набора нейронов.

Слои сетчатки

Ретина образует «сэндвич» из десяти рядов:


1. Пигментный эпителий , прилегающий к мембране Бруха. Отличается широкой функциональностью. Защита, клеточное питание, транспортировка. Принимает в себя отторгающие сегменты фоторецепторов. Служит барьером на пути светового излучения.


2. Фотосенсорный слой . Клетки, обладающие чувствительностью к свету, в виде своеобразных палочек и колбочек. В палочкоподобных цилиндрах содержится зрительный сегмент родопсин, а в колбочках – иодопсин. Первый обеспечивает цветоощущение и периферическое зрение, а второй – видение при слабой освещенности.


3. Пограничная мембрана (наружная). Структурно состоит из терминальных образований и наружных участков рецепторов ретины. Структура мюллеровских клеток за счет своих отростков делает возможным сбор света на сетчатке и его доставку к соответствующим рецепторам.


4. Ядерный слой (наружный). Получил свое название из-за того, что сформирован на основе ядер и тел светочувствительных клеток.


5. Плексиформный слой (наружный). Определяется контактами на уровне клеток. Возникают между нейронами, характеризуемыми как биполярные и ассоциативные. Сюда же относят и светочувствительные образования этого вида.


6. Ядерный слой (внутренний). Сформирован из разных клеток, например, биполярных и мюллеровских. Востребованность последних связана с необходимостью поддержания функций нервной ткани. Другие ориентированы на обработку сигналов от фоторецепторов.


7. Плексиформный слой (внутренний). Переплетение нервных клеток в части их отростков. Служит разделителем между внутренней частью сетчатки, характеризуемой как сосудистая, и наружной – бессосудистая.


8. Ганглиозные клетки . Обеспечивают свободное проникновение света ввиду отсутствия такого покрытия, как миелин. Являются мостом между светочувствительными клетками и зрительным нервом.


9. Ганглионарная клетка . Участвует в формировании зрительного нерва.


10. Пограничная мембрана (внутренняя). Покрытие ретины изнутри. Состоит из клеток Мюллера.

Оптическая система глаза

Качество зрения зависит от основных частей человеческого глаза. Состояние пропускающих в виде роговицы, сетчатки и хрусталика напрямую влияет на то, как будет видеть человек: плохо или хорошо.


Большее участие в преломлении лучей света принимает роговица. В этом контексте можно провести аналогию с принципом действия фотоаппарата. Диафрагма – это зрачок. С его помощью регулируется поток световых лучей, а фокусное расстояние задает качество изображения.

Благодаря хрусталику световые лучи попадают на «фотопленку». В нашем случае под ней следует понимать сетчатую оболочку.


Стекловидное тело и влага, находящаяся в глазных камерах, также преломляют световые лучи, но в значительно меньшей степени. Хотя состояние этих образований ощутимо сказывается на качестве зрения. Оно способно ухудшаться при снижении степени прозрачности влаги или появлении в ней крови.

Правильное восприятие окружающего мира через органы зрения предполагает, что проход световых лучей через все оптические среды приводит к формированию на сетчатке уменьшенного и перевернутого изображения, но реального. Заключительная обработка информации от зрительных рецепторов происходит в отделах головного мозга. За это отвечают затылочные доли.

Слезный аппарат

Физиологическая система, обеспечивающая выработку специальной влаги с последующим ее выводом в полость носа. Органы слезной системы классифицируются в зависимости от секреторного отдела и аппарата слезоотведения. Особенность системы заключается в парности ее органов.

Работа концевого отдела состоит в том, чтобы вырабатывать слезу. Его структура включает в себя слезную железу и добавочные образования подобного вида. Под первой понимается серозная железа, обладающая сложным строением. Подразделяется на две части (низ, верх), где в качестве разделительного барьера выступает сухожилие мышцы, отвечающей за подъем верхнего века. Область вверху в плане размера следующая: 12 на 25 мм при 5-миллиметровой толщине. Ее расположение определяется стенкой глазницы, имеющей направленность вверх и наружу. Эта часть включает в себя выводные канальцы. Их число варьируется от 3 до 5. Вывод осуществляется в конъюнктиву.

Что касается нижней части, то она обладает менее значительными размерами (11 на 8 мм) и меньшей толщиной (2 мм). У нее есть канальцы, где одни соединяются с такими же образованиями верхней части, а другие выводятся в конъюнктивальный мешок.


Обеспечение слезной железы кровью производится посредством слезной артерии, а отток организован в слезную вену. Тройничный лицевой нерв выступает в роли инициатора соответствующего возбуждения нервной системы. Также к этому процессу подключаются симпатические и парасимпатические нервные волокна.

В стандартной ситуации работают исключительно добавочные железы. Посредством их функциональности обеспечивается выработка слезы в объеме около 1 мм. Это обеспечивает требуемое увлажнение. Что касается основной слезной железы, то она вступает в действие при появлении разного рода раздражителей. Это могут быть инородные тела, слишком яркий свет, эмоциональный всплеск и т. д.

Структура слезоотводящего отдела основывается на образованиях, способствующих движению влаги. Также они отвечают за ее отвод. Такое функционирование обеспечивается благодаря слезному ручью, озеру, точкам, канальцам, мешку и носослезному протоку.

Упомянутые точки отлично визуализируются. Их расположение определяется внутренними углами век. Они ориентированы на слезное озеро и находятся в плотном соприкосновении с конъюнктивой. Установление связи между мешком и точками достигается посредством специальных канальцев, достигающих в длину 8–10 мм.

Расположение слезного мешка определяется костной ямкой, находящейся рядом с углом глазницы. С точки зрения анатомии это образование представляет собой закрытую полость цилиндрического вида. Она вытянута на 10 мм, а ее ширина составляет 4 мм. На поверхности мешка присутствует эпителий, имеющий в своем составе бокаловидный гландулоцит. Приток крови обеспечивается с помощью глазной артерии, а отток – мелких вен. Часть мешка внизу сообщается с носослезным каналом, выходящим в носовую полость.

Стекловидное тело

Вещество, похожее на гель. Заполняет глазное яблоко на 2/3. Отличается прозрачностью. Состоит на 99% из воды, имеющей в своем составе гиалоурановую кислоту.

В передней части находится выемка. Она прилегает к хрусталику. В остальном это образование контактирует с сетчатой оболочкой в части ее мембраны. ДЗН и хрусталик соотносятся посредством гиалоидного канала. Структурно стекловидное тело состоит из белка коллагена в виде волокон. Существующие промежутки между ними заполнены жидкостью. Это объясняет то, что рассматриваемое образование представляет собой студенистую массу.


По периферии располагаются гиалоциты – клетки, способствующие образованию гиалуроновой кислоты, белков и коллагенов. Также они участвуют в формировании белковых структур, известных как гемидесмосомы. С их помощью устанавливается плотная связь между мембраной сетчатки и самим стекловидным телом.


К главным функциям последнего относят:
  • придание глазу конкретной формы;
  • преломление световых лучей;
  • создание определенного напряжения в тканях органа зрения;
  • достижение эффекта несжимаемости глаза.

Фоторецепторы

Тип нейронов, входящих в состав сетчатой оболочки глаза. Обеспечивают обработку светового сигнала таким образом, что он преобразуется в электрические импульсы. Это запускает процессы биологического характера, приводящие к формированию зрительных образов. На практике фоторецепторные белки вбирают в себя фотоны, что насыщает клетку соответствующим потенциалом.

Светочувствительные образования – это своеобразные палочки и колбочки. Их функциональность способствует правильному восприятию объектов внешнего мира. В результате можно говорить об образовании соответствующего эффекта – зрения. Человек способен видеть за счет биологических процессов, протекающих в таких частях фоторецепторов, как внешние доли их мембран.

Еще существуют светочувствительные клетки, известные как глазки Гессе. Они находятся внутри пигментной клетки, обладающей чашеобразной формой. Работа этих образований заключается в улавливании направления лучей света и определении его интенсивности. С их помощью происходит обработка светового сигнала, когда на выходе получаются электрические импульсы.

Следующий класс фоторецепторов стал известен в 1990-х годах. Под ним подразумеваются светочувствительные клетки ганглиозного слоя сетчатой оболочки. Они поддерживают зрительный процесс, но в косвенной форме. Здесь подразумеваются биологические ритмы в течение суток и зрачковый рефлекс.

Так называемые палочки и колбочки с точки зрения функциональности существенно отличаются друг от друга. Например, первым присуща высокая чувствительность. Если освещение низкое, то именно они гарантируют формирование хоть какого-то зрительного образа. Этот факт дает понять, почему при недостаточной освещенности плохо различаются цвета. В этом случае активен лишь один тип фоторецепторов – палочки.


Для работы колбочек необходим более яркий свет, чтобы обеспечить прохождение соответствующих биологических сигналов. Строение сетчатки предполагает наличие колбочек разных типов. Всего их три. Каждый определяет фоторецепторы, настроенные на конкретную длину волн света.

За восприятие картинки в цвете отвечают отделы коры, ориентированные на обработку зрительной информации, что предполагает распознавание импульсов в формате RGB. Колбочки способны различать световой поток по длине волн, характеризуя их как короткие, средние и длинные. В зависимости от того, сколько фотонов способна поглотить колбочка, формируются соответствующие биологические реакции. Различные ответы этих образований базируются на конкретном количестве вобранных фотонов той или иной длины. В частности, фоторецепторные белки L-колбочек поглощают условный красный цвет, соотносимый с длинными волнами. Лучи света, имеющие меньшую длину, способны приводить к одному и тому же ответу в том случае, если они достаточно яркие.

Реакция одного и того же фоторецептора может провоцироваться волнами света различной длины, когда отличия наблюдаются и на уровне интенсивности светового потока. В результате мозг не всегда определяет свет и получаемую картинку. Посредством зрительных рецепторов происходит отбор и выделение максимально ярких лучей. Затем формируются биосигналы, поступающие в те отделы мозга, где происходит обработка информации такого вида. Создается субъективное восприятие оптической картинки в цвете.

Сетчатка глаза человека состоит из 6 млн колбочек и 120 млн палочек. У животных их количество и соотношение различно. Основное влияние оказывает образ жизни. У сов сетчатка содержит очень значительное количество палочек. Зрительная система человека – это почти 1,5 млн ганглиозных клеток. В их числе есть клетки, обладающие фоточувствительностью.

Хрусталик

Биологическая линза, характеризуемая с точки зрения формы как двояковыпуклая. Выступает в роли элемента светопроводящей и светопреломляющей системы. Обеспечивает возможность фокусировки на предметах, удаленных на разное расстояние. Расположен в задней камере глаза. Высота хрусталика составляет от 8 до 9 мм при его толщине от 4 до 5 мм. С возрастом происходит его утолщение. Этот процесс медленный, но верный. Передняя часть этого прозрачного тела обладает менее выпуклой поверхностью по сравнению с задней.

Форма хрусталика соотносится с двояковыпуклой линзой, имеющей радиус кривизны в передней части около 10 мм. При этом с обратной стороны этот параметр не превышает 6 мм. Диаметр хрусталика – 10 мм, а размер в передней части – от 3,5 до 5 мм. Содержащееся внутри вещество удерживается капсулой с тонкими стенками. Фронтальная часть имеет эпителиальную ткань, расположенную внизу. На задней стороне капсулы эпителия нет.

Эпителиальные клетки отличаются тем, что делятся постоянно, но это не сказывается на объеме хрусталика в плане его изменения. Такая ситуация объясняется обезвоживанием старых клеток, расположенных на минимальном удалении от центра прозрачного тела. Это способствует уменьшению их объемов. Процесс этого вида приводит к такой особенности, как возрастная . При достижении человеком 40-летнего возраста теряется эластичность хрусталика. Снижается резерв аккомодации, и возможность хорошо видеть на близком расстоянии существенно ухудшается.


Хрусталик размещен непосредственно за радужкой. Его удержание обеспечивают тонкие нити, образующие цинновую связку. Один их конец входит в оболочку хрусталика, а другой – закрепляется на цилиарном теле. Степень натяжения этих нитей влияет на форму прозрачного тела, что изменяет преломляющую силу. В итоге становится возможным процесс аккомодации. Хрусталик служит границей между двумя отделами: передним и задним.


Выделяют следующую функциональность хрусталика:
  • светопроводность – достигается за счет того, что тело этого элемента глаза прозрачное;
  • светопреломление – работает как биологическая линза, выступает в роли второй преломляющей среды (первая – роговица). В состоянии покоя параметр преломляющей силы составляет 19 диоптрий. Это норма;
  • аккомодация – изменение формы прозрачного тела в целях хорошего видения предметов, находящихся на разном удалении. Преломляющая сила в этом случае изменяется в диапазоне от 19 до 33 диоптрий;
  • разделение – образует два отдела глаза (передний, задний), что определяется особенностью расположения. Выступает в роли барьера, сдерживающего стекловидное тело. Оно не может оказаться в передней камере;
  • защита – обеспечивается биологическая безопасность. Болезнетворные микроорганизмы, оказавшись в передней камере, не способны проникнуть в стекловидное тело.

Врожденные заболевания в некоторых случаях приводят к смещению хрусталика. Он занимает неправильное положение из-за того, что связочный аппарата ослаблен или имеет какой-либо дефект строения. Сюда еще относят вероятность врожденных помутнений ядра. Все это способствует снижению зрения.

Циннова связка

Образование на основе волокон, определяемых как гликопротеиновые и зонулярные. Обеспечивает фиксацию хрусталика. Поверхность волокон покрыта мукополисахаридным гелем, что обусловливается потребностью в защите от влаги, присутствующей в камерах глаза. Пространство за хрусталиком служит местом, где находится это образование.

Активность цинновой связки приводит к сокращению цилиарной мышцы. Хрусталик изменяет кривизну, что позволяет фокусироваться на объектах, находящихся на разном удалении. Напряжение мышцы ослабляет натяжение, и хрусталик принимает форму, близкую к шару. Расслабление мышцы приводит к напряжению волокон, что сплющивает хрусталик. Фокусировка меняется.


Рассматриваемые волокна подразделяются на задние и передние. Одна сторона задних волокон крепится у зубчатого края, а другая – на фронтальной области хрусталика. Исходной точкой передних волокон служит основание цилиарных отростков, а крепление осуществляется в тыльной части хрусталика и ближе к экватору. Скрещенные волокна способствуют образованию по периферии хрусталика щелевидного пространства.

Крепление волокон на ресничном теле производится в части стекловидной мембраны. В случае отрыва этих образований констатируется так называемый вывих хрусталика, обусловленный его смещением.

Циннова связка выступает в качестве основного элемента системы, обеспечивающей возможность аккомодации глаза.

Видео

Глазной аппарат является стереоскопическим и в организме отвечает за правильное восприятие информации, точность ее обработки и дальнейшую передачу в мозг.

Правая часть сетчатки, посредством передачи через зрительный нерв, отправляет в мозг информацию правой доли изображения, левая часть передает левую долю, в итоге, мозг соединяет обе, и получается общая зрительная картинка.

Хрусталик фиксируется тонкими нитями, один конец которых плотно вплетен в хрусталик, его капсулу, а другой конец соединен с ресничным телом.

При изменении натяжения нитей, происходит процесс аккомодации . Хрусталик лишен лимфатических сосудов и кровеносных, а также нервов.

Он обеспечивает глаз проведением света и светопреломлением, наделяет его функцией аккомодации, и является разделителем глаза на задний отдел и передний отдел.

Стекловидное тело

Стекловидное тело глаза является самым большим образованием. Это вещество без цвета гелеобразной субстанции, которое образовано в виде шарообразной формы, в сагиттальном направлении оно сплющено.

Стекловидное тело состоит из вещества гелеобразной субстанции органического происхождения, мембраны и стекловидного канала.

Перед ним находится хрусталик, зонулярная связка и цилиарные отростки, задняя его часть вплотную подходит к сетчатке. Соединение стекловидного тела и сетчатки происходит у зрительного нерва и в части зубчатой линии, где находится плоская часть цилиарного тела. Данная область является основание стекловидного тела, а ширина этого пояса 2-2,5 мм.

Химический состав стекловидного тела: 98,8 гидрофильный гель, 1,12% сухой остаток. При возникновении кровоизлияния, тромбопластическая активность стекловидного тела резко возрастает.

Такая особенность направлена на остановку кровотечения. В нормальном состоянии стекловидного тела фибринолитическая активность отсутствует.

Питание и поддерживание среды стекловидного тела обеспечивается диффузией питательных веществ, которые через стекловидную мембрану, поступают в тело из внутриглазной жидкости и осмосом.

В стекловидном теле нет сосудов и нервов, а биомикроскопическая его структура представляет различных форм лент серого цвета с белыми крапинками. Между лентами находятся участки без цвета, совершенно прозрачные.

Вакуоли и помутнения в стекловидном теле проявляются с возрастом. В случае, когда происходит частичная потеря стекловидного тела, место заполняется внутриглазной жидкостью.

Камеры с водянистой влагой

У глаза две камеры, которые заполнены водянистой влагой. Влага образуется из крови отростками цилиарного тела. Ее выделение происходит сначала в переднюю камеру, затем она попадает в переднюю камеру.

В переднюю камеру водянистая влага поступает через зрачок. В сутки глаз человека производит от 3 до 9 мл влаги. В водянистой влаге присутствуют вещества, которые питают хрусталик, эндотелий роговицы, переднюю часть стекловидного тела, а также трабекулярную сеть.

В ней находится иммуноглобулины, которые помогают удалять опасные факторы из глаза, его внутренней части. Если отток водянистой влаги нарушен, то это может развить такое глазное заболевание, как глаукома , а также к повышению давления внутри глаза.

В случаях нарушения целостности глазного яблока, потеря водянистой влаги приводит к гипотонии глаза.

Радужная оболочка

Радужная оболочка – авангардный отдел сосудистого тракта . Располагается она сразу за роговицей, между камерами и перед хрусталиком. Радужная оболочка имеет круглую форму и расположена вокруг зрачка.

Состоит она из пограничного слоя, стромального слоя и пигментно-мышечного слоя. У нее неровная поверхность с рисунком. В радужной оболочке присутствуют клетки пигментного характера, которые и отвечают за цвет глаз.

Главные задачи радужки: регулирование светового потока, который проходит на сетчатку глаза через зрачок и защита светочувствительных клеток. От правильного функционирования радужки зависит острота зрения.

У радужной оболочки две группы мышц. Одна группа мышц дислоцируется вокруг зрачка и регулирует его уменьшение, другая группа дислоцируется радиально по толщине радужной оболочки, регулируя расширение зрачка. Радужная оболочка имеет множество кровеносных сосудов.

Сетчатка

Является оптимально тонкой оболочкой нервной ткани и представляет тобой периферический отдел зрительного анализатора. В сетчатке присутствуют фоторецепторные клетки, которые отвечают за восприятие, а также, за преобразование в нервные импульсы электромагнитного излучения. Она прилегает с внутренней стороны к стекловидному телу, а к сосудистому слою глазного яблока – снаружи.

У сетчатки две части. Одна часть – зрительная, другая – слепая часть, которая не содержит фоточувствительных клеток. Внутренняя структура сетчатки разделяется на 10 слоев.

Главная задача сетчатки – принимать световой поток, обрабатывать его, переводя в сигнал, который образует в себе полную и закодированную информацию о зрительной картинке.

Зрительный нерв

Зрительный нерв – переплетение нервных волокон. Среди этих тонких волокон находится центральный канал сетчатки. Исходная точка зрительного нерва находится в ганглиозных клетках, далее его формирование происходит путем прохождения через оболочку склеры и обрастания нервных волокон менингеальными структурами.

Глазной нерв имеет три слоя – твердый, паутинный, мягкий. Между слоями находится жидкость. Диаметр зрительного диска составляет около 2 мм.

Топографическое строение зрительного нерва:

  • внутриглазной;
  • внутриорбитальный;
  • внутричерепной;
  • внутриканальцевый;

Принцип работы глаза человека

Световой поток проходит через зрачок и сквозь хрусталик приводится в фокус на сетчатке. Сетчатка богата светочувствительными палочками и колбочками, которых в человеческом глазу более 100 миллионов.

Видео: "Процесс зрения"

Палочки обеспечивают чувствительность к свету, а колбочки дают глазам свойство различать цвета и небольшие детали. После преломления светового потока, сетчатка трансформирует картинку в нервные импульсы. Далее эти импульсы переходят в мозг, который обрабатывает поступившую информацию.

Болезни

Болезни, связанные с нарушением строения глаз, могут вызываться как неправильным расположением его частей по отношению друг к другу, так и внутренними дефектами этих частей.

К первой группе относятся заболевания, приводящие к снижению остроты зрения:

  • Близорукость . Характеризуется увеличенной по сравнению с нормой длиной глазного яблока. Это приводит к фокусировке света, проходящего через хрусталик, не на сетчатке, а перед ней. Нарушается способность видеть предметы, находящиеся на удалении от глаз. Близорукости соответствует отрицательное число диоптрий при измерении остроты зрения.
  • Дальнозоркость . Является следствием уменьшения длины глазного яблока или утери хрусталиком эластичности. В обоих случаях снижаются аккомодационные возможности, нарушается правильная фокусировка изображения, световые лучи сходятся за сетчаткой. Нарушается способность видеть предметы, расположенные вблизи. Дальнозоркости соответствует положительное число диоптрий.
  • Астигматизм . Для этого заболевания характерно нарушение сферичности глазной оболочки из-за дефектов хрусталика или роговицы. Это приводит к неравномерному схождению поступающих в глаз лучей света, четкость получаемого мозгом изображения нарушается. Астигматизму нередко сопутствует близорукость или дальнозоркость.

Патологии, связанные с функциональными нарушениями тех или иных частей органа зрения:

  • Катаракта . При этом заболевании хрусталик глаза мутнеет, нарушаются его прозрачность и способность к проведению света. В зависимости от степени помутнения, нарушения зрения могут быть разными вплоть до полной слепоты. У большинства людей катаракта возникает в старости, но не прогрессирует до тяжелых стадий.
  • Глаукома – патологическое изменение внутриглазного давления. Может провоцироваться множеством факторов, например, уменьшением передней камеры глаза или развитием катаракты.
  • Миодезопсия или «летающие мушки» перед глазами . Характеризуется появлением черных точек в поле зрения, которые могут быть представленными в разных количествах и размерах. Точки возникают из-за нарушений в строении стекловидного тела. Но у этого недуга причины не всегда являются физиологическими – «мушки» могут появляться из-за переутомления или после перенесения инфекционных заболеваний.
  • Косоглазие . Провоцируется изменением правильного положения глазного яблока по отношению к глазной мышце или нарушением работы глазных мышц.
  • Отслоение сетчатки. Сетчатая оболочка и задняя сосудистая стенка отделяются друг от друга. Это происходит из-за нарушения герметичности сетчатки, случающегося при разрывах ее тканей. Отслоение проявляется помутнением очертания предметов перед глазами, появлением вспышек в виде искр. Если из поля зрения выпадают отдельные углы, это значит, что отслоение приняло тяжелые формы. При отсутствии лечения наступает полная слепота.
  • Анофтальм – недостаточная развитость глазного яблока. Редкая врожденная патология, причина которой заключается в нарушении формирования лобных долей мозга. Анофтальм может быть и приобретенным, тогда он развивается после хирургических операций (например, по удалению опухолей) или тяжелых травм глаз.

Профилактика

  • Следует заботиться о здоровье кровеносной системы, в особенности той ее части, которая отвечает за приток крови к голове. Многие дефекты зрения возникают из-за атрофии и повреждения глазных и головных нервов.
  • Нельзя допускать перенапряжения глаз. При работе, связанной с постоянным рассмотрением мелких объектов, нужно делать регулярные перерывы с проведением глазной гимнастики. Рабочее место должно обустраиваться так, чтобы яркость освещения и расстояния между предметами были оптимальными.
  • Поступление в организм достаточного количества минералов и витаминов – это еще одно условие сохранения зрения здоровым. Особенно для глаз важны витамины C, E, A и такие минералы, как цинк.
  • Правильная глазная гигиена позволяет предотвратить развитие воспалительных процессов, осложнения которых могут значительно ухудшить зрение.

Список литературы

  1. Офтальмология. Национальное руководство. Краткое издание Под ред. С.Э. Аветисова, Е.А. Егорова, Л.К. Мошетовой, В.В. Нероева, Х.П. Тахчиди 2019
  2. Атлас по офтальмологии Г.К. Криглстайн, К.П. Ионеску-Сайперс, М. Северин, М.А. Вобиг 2009

Глаз состоит из глазного яблока диаметром 22-24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой ). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.

Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.

Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6-8 градусов.

Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения. Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения. В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.

В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек. Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.

На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25-30 см.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50-60 минут пребывания в темноте.

Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8-10 минут чувство ослепления прекращается, и глаз снова видит.

Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1-1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали. Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45-50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света. Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

Дефекты зрения и их коррекция

При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

Близорукость

При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

Дальняя точка глаза

Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

Дальняя точка глаза

Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

Дальнозоркость

При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

Дальняя точка глаза

Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

Дальняя точка глаза

При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

Аметропия

Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

Астигматизм

При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать. На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.

Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями. Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.

Зрение - это биологический процесс, обусловливающий восприятие формы, размеров, цвета предметов, окружающих нас, ориентировку среди них. Оно возможно благодаря функции зрительного анализатора, в состав которого входит воспринимающий аппарат - глаз.

Функция зрения не только в восприятии световых лучей. Им мы пользуемся для оценки расстояния, объемности предметов, наглядного восприятия окружающей действительности.

Глаз человека — фото

В настоящее время из всех органов чувств у человека наибольшая нагрузка падает на органы зрения. Это обусловлено чтением, письмом, просмотром телепередач и других видов получения информации и работы.

Строение глаза человека

Орган зрения состоит из глазного яблока и вспомогательного аппарата, расположенных в глазнице - углублении костей лицевого черепа.

Строение глазного яблока

Глазное яблоко имеет вид шаровидного тела и состоит из трех оболочек:

  • Наружной - фиброзной;
  • средней - сосудистой;
  • внутренней - сетчатой.

Наружная фиброзная оболочка в заднем отделе образует белочную, или склеру, а спереди она переходит в проницаемую для света роговицу.

Средняя сосудистая оболочка называется так из-за того, что богата сосудами. Расположена под склерой. Передняя часть этой оболочки образует радужку , или радужную оболочку. Так ее называют из-за окраски (цвета радуги). В радужной оболочке находится зрачок - круглое отверстие, которое способно изменять величину в зависимости от интенсивности освещения посредством врожденного рефлекса. Для этого в радужке имеются мышцы, суживающие и расширяющие зрачок.

Радужка выполняет роль диафрагмы, регулирующей количество поступающего света на светочувствительный аппарат, и предохраняет его от разрушений, осуществляя привыкание органа зрения к интенсивности света и темноты. Сосудистая оболочка образует жидкость - влагу камер глаза.

Внутренняя сетчатая оболочка, или сетчатка - прилегает сзади к средней (сосудистой) оболочке. Состоит из двух листков: наружного и внутреннего. Наружный листок содержит пигмент, внутренний - светочувствительные элементы.


Сетчатая оболочка выстилает дно глаза. Если смотреть на нее со стороны зрачка, то на дне видно беловатое круглое пятно. Это место выхода зрительного нерва. Здесь нет светочувствительных элементов и поэтому не воспринимаются световые лучи, оно называется слепым пятном . Сбоку от него находится желтое пятно (макула) . Это место наибольшей остроты зрения.

Во внутреннем слое сетчатой оболочки расположены светочувствительные элементы - зрительные клетки. Их концы имеют вид палочек и колбочек. Палочки содержат зрительный пигмент - родопсин, колбочки - йодопсин. Палочки воспринимают свет в условиях сумеречного освещения, а колбочки - цвета при достаточно ярком освещении.

Последовательность прохождения света через глаз

Рассмотрим ход световых лучей через ту часть глаза, которая составляет его оптический аппарат. Вначале свет проходит через роговицу, водянистую влагу передней камеры глаза (между роговицей и зрачком), зрачок, хрусталик (в виде двояковыпуклой линзы), стекловидное тело (густой консистенции прозрачная среда) и, наконец, попадает на сетчатку.


В случаях, когда световые лучи, пройдя через оптические среды глаза, фокусируются не на сетчатке, то развиваются аномалии зрения:

  • Если впереди нее - близорукость;
  • если позади - дальнозоркость.

Для выравнивания близорукости используют двояковогнутые, а дальнозоркости - двояковыпуклые стекла очков.

Как уже отмечалось, в сетчатке расположены палочки и колбочки. При попадании на них свет вызывает раздражение: возникают сложные фотохимические, электрические, ионные и ферментативные процессы, которые обусловливают нервное возбуждение - сигнал. Он поступает по зрительному нерву в подкорковые (четверохолмие, зрительный бугор и др.) центры зрения. Потом направляется в кору затылочных долей мозга, где воспринимается в виде зрительного ощущения.

Весь комплекс нервной системы, включающий рецепторы света, зрительные нервы, центры зрения в головном мозге, составляет зрительный анализатор.

Строение вспомогательного аппарата глаза


Помимо глазного яблока к глазу относится и вспомогательный аппарат. Он состоит из век, шести мышц, двигающих глазное яблоко. Заднюю поверхность век покрывает оболочка - конъюнктива, которая частично переходит на глазное яблоко. Кроме того, к вспомогательным органам глаза относится слезный аппарат. Он состоит из слезной железы, слезных канальцев, мешка и носослезного протока.

Слезная железа выделяет секрет - слезы, содержащие лизоцим, губительно действующий на микроорганизмы. Она расположена в ямке лобной кости. Ее 5-12 канальцев открываются в щель между конъюнктивой и глазным яблоком в наружном углу глаза. Увлажнив поверхность глазного яблока, слезы оттекают к внутреннему углу глаза (к носу). Здесь они собираются в отверстия слезных канальцев, по которым попадают в слезный мешок, также расположенный у внутреннего угла глаза.

Из мешка по носослезному протоку слезы направляются в полость носа, под нижнюю раковину (поэтому порой можно заметить, как во время плача слезы текут из носа).

Гигиена зрения

Знание путей оттока слез из мест образования - слезных желез - позволяет правильно выполнять такой гигиенический навык, как - «протирание» глаз. При этом движение рук с чистой салфеткой (желательно стерильной) нужно направлять от наружного угла глаза к внутреннему, «протирать глаза в сторону носа», в сторону естественного тока слез, а не против него, способствуя, таким образом, удалению инородного тела (пыли), попавшего на поверхность глазного яблока.

Орган зрения нужно оберегать от попаданий инородных тел, повреждений. При работе, где образуются частицы, осколки материалов, стружка, следует пользоваться защитными очками.

При ухудшении зрения не медлить и обращаться к врачу-окулисту, выполнять его рекомендации, чтобы избежать дальнейшего развития болезни. Интенсивность освещения рабочего места должна зависеть от вида выполняемой работы: чем более тонкие движения выполняются, тем интенсивнее должно быть освещение. Оно не должно быть ни ярким, ни слабым, а ровно таким, которое требует наименьшего напряжения зрения и способствует эффективной работе.

Как поддерживать остроту зрения

Разработаны нормативы освещения в зависимости от назначения помещения, от рода деятельности. Количество света определяют с помощью специального прибора - люксметра. Контроль правильности освещения осуществляет медико-санитарная служба и администрация учреждений и предприятий.

Следует помнить, что особенно способствует ухудшению остроты зрения яркий свет. Поэтому нужно избегать смотреть без светозащитных очков в сторону источников яркого света как искусственных, так и естественных.

Для предотвращения ухудшения зрения в связи с высокой нагрузкой на глаза нужно выполнять определенные правила:

  • При чтении и письме необходимо равномерное достаточное освещение, от которого не развивается утомление;
  • расстояние от глаз до предмета чтения, письма или мелких предметов, с которыми вы заняты, должно быть около 30-35см;
  • предметы, с которыми вы работаете, нужно размещать удобно для глаз;
  • телепередачи смотреть не ближе 1,5 метра от экрана. При этом обязательно нужно подсвечивание помещения за счет скрытого источника света.

Немаловажное значение для поддержания нормального зрения имеет витаминизированное питание вообще и особенно витамин А, которого много в животных продуктах, в моркови, тыкве.

Размеренный образ жизни, включающий в себя правильное чередование режима труда и отдыха, питания, исключающий вредные привычки, в том числе курение и употребление алкогольных напитков, в немалой степени способствует сохранению зрения и здоровья вообще.

Гигиенические требования к сохранению органа зрения настолько обширны и разнообразны, что приведенными выше нельзя ограничиваться. Они могут меняться в зависимости от трудовой деятельности, их следует выяснить у врача и выполнять.